
WhatsApp
Encryption Overview
Technical white paper

Version 3 Updated October 22, 2020
Version 2 Updated December 19, 2017
Version 1 Originally published April 5, 2016

Contents

Introduction . 3

Terms . 3

Client Registration . 4

Initiating Session Setup . 4

Receiving Session Setup . 5

Exchanging Messages . 5

Transmitting Media and Other Attachments 6

Group Messages . 6

Call Setup . 7

Statuses . 8

Live Location . 8

Verifying Keys . 10

Transport Security . 10

Defining End-to-End Encryption . 11

Implementation on WhatsApp Services 11

Encryption Has No Off Switch . 13

Displaying End-to-End Encryption Status 13

Conclusion . 13

2 WhatsApp Encryption Overview

OCTOBER 22, 2020

Introduction
This white paper provides a technical explanation of WhatsApp’s end-to-end
encryption system. Please visit WhatsApp’s website at www.whatsapp.com/
security for more information.

WhatsApp Messenger allows people to exchange messages (including chats,
group chats, images, videos, voice messages and files), share status posts,
and make WhatsApp calls around the world. WhatsApp messages, voice and
video calls between a sender and receiver that use WhatsApp client software
released after March 31, 2016 use the Signal protocol outlined below. See
“Defining End-to-End Encryption” for information about which communications
are end-to-end encrypted.

The Signal Protocol, designed by Open Whisper Systems, is the basis for
WhatsApp’s end-to-end encryption. This end-to-end encryption protocol is
designed to prevent third parties and WhatsApp from having plaintext access
to messages or calls. What’s more, even if encryption keys from a user’s device
are ever physically compromised, they cannot be used to go back in time to
decrypt previously transmitted messages.

This document gives an overview of the Signal Protocol and its use in
WhatsApp.

Terms

Public Key Types
•	 Identity Key Pair – A long-term Curve25519 key pair,

generated at install time.

•	 Signed Pre Key – A medium-term Curve25519 key pair,
generated at install time, signed by the Identity Key, and rotated
on a periodic timed basis.

•	 One-Time Pre Keys – A queue of Curve25519 key pairs for one
time use, generated at install time, and replenished as needed.

Session Key Types
•	 Root Key – A 32-byte value that is used to create Chain Keys.

•	 Chain Key – A 32-byte value that is used to create Message
Keys.

•	 Message Key – An 80-byte value that is used to encrypt message
contents. 32 bytes are used for an AES-256 key, 32 bytes for a
HMAC-SHA256 key, and 16 bytes for an IV.

3 WhatsApp Encryption Overview

OCTOBER 22, 2020

Client Registration
At registration time, a WhatsApp client transmits its public Identity
Key, public Signed Pre Key (with its signature), and a batch of
public One-Time Pre Keys to the server. The WhatsApp server
stores these public keys associated with the user’s identifier.

Initiating Session Setup
To communicate with another WhatsApp user, a WhatsApp client
first needs to establish an encrypted session. Once the session
is established, clients do not need to rebuild a new session with
each other until the existing session state is lost through an
external event such as an app reinstall or device change.

To establish a session:

1.	 The initiating client (“initiator”) requests the public Identity Key,
public Signed Pre Key, and a single public One-Time Pre Key
for the recipient.

2.	 The server returns the requested public key values. A One-Time
Pre Key is only used once, so it is removed from server storage
after being requested. If the recipient’s latest batch of One-Time
Pre Keys has been consumed and the recipient has not replenished
them, no One-Time Pre Key will be returned.

3.	 The initiator saves the recipient’s Identity Key as Irecipient, the
Signed Pre Key as Srecipient, and the One-Time Pre Key as
Orecipient.

4.	 The initiator generates an ephemeral Curve25519 key pair, Einitiator.

5.	 The initiator loads its own Identity Key as Iinitiator.

6.	 The initiator calculates a master secret as master_secret =
ECDH(Iinitiator, Srecipient) || ECDH(Einitiator, Irecipient) ||
ECDH(Einitiator, Srecipient) || ECDH(Einitiator, Orecipient).
If there is no One Time Pre Key, the final ECDH is omitted.

7.	 The initiator uses HKDF to create a Root Key and Chain Keys
from the master_secret.

4 WhatsApp Encryption Overview

OCTOBER 22, 2020

Receiving Session Setup
After building a long-running encryption session, the initiator can immedi-
ately start sending messages to the recipient, even if the recipient is offline.
Until the recipient responds, the initiator includes the information (in the
header of all messages sent) that the recipient requires to build a cor-
responding session. This includes the initiator’s Einitiator and Iinitiator.

When the recipient receives a message that includes session setup
information:

1.	 The recipient calculates the corresponding master_secret using
its own private keys and the public keys advertised in the header of
the incoming message.

2.	 The recipient deletes the One-Time Pre Key used by the initiator.

3.	 The initiator uses HKDF to derive a corresponding Root Key and
Chain Keys from the master_secret.

Exchanging Messages
Once a session has been established, clients exchange messages that are
protected with a Message Key using AES256 in CBC mode for encryption
and HMAC-SHA256 for authentication.

The Message Key changes for each message transmitted, and is ephemeral,
such that the Message Key used to encrypt a message cannot be reconstructed
from the session state after a message has been transmitted or received.

The Message Key is derived from a sender’s Chain Key that “ratchets”
forward with every message sent. Additionally, a new ECDH agreement is
performed with each message roundtrip to create a new Chain Key. This
provides forward secrecy through the combination of both an immediate
“hash ratchet” and a round trip “DH ratchet.”

Calculating a Message Key from a Chain Key

Each time a new Message Key is needed by a
message sender, it is calculated as:

1.	 Message Key = HMAC-SHA256(Chain Key, 0x01).

2.	 The Chain Key is then updated as Chain Key =
HMAC-SHA256(Chain Key, 0x02).

This causes the Chain Key to “ratchet” forward, and
also means that a stored Message Key can’t be used to
derive current or past values of the Chain Key.

5 WhatsApp Encryption Overview

OCTOBER 22, 2020

Calculating a Chain Key from a Root Key

Each time a message is transmitted, an ephemeral Curve25519 public key
is advertised along with it. Once a response is received, a new Chain Key
and Root Key are calculated as:

1.	 ephemeral_secret =
ECDH(Ephemeralsender, Ephemeralrecipient).

2.	 Chain Key, Root Key =
HKDF(Root Key, ephemeral_secret).

A chain is only ever used to send messages from one user, so message keys
are not reused. Because of the way Message Keys and Chain Keys are
calculated, messages can arrive delayed, out of order, or can be lost entirely
without any problems.

Transmitting Media and
Other Attachments
Large attachments of any type (video, audio, images, or files) are also end-
to-end encrypted:

1.	 The WhatsApp user sending a message (“sender”) generates
an ephemeral 32 byte AES256 key, and an ephemeral 32 byte
HMAC-SHA256 key.

2.	 The sender encrypts the attachment with the AES256 key in CBC
mode with a random IV, then appends a MAC of the ciphertext using
HMAC-SHA256.

3.	 The sender uploads the encrypted attachment to a blob store.

4.	 The sender transmits a normal encrypted message to the recipient
that contains the encryption key, the HMAC key, a SHA256 hash of
the encrypted blob, and a pointer to the blob in the blob store.

5.	 The recipient decrypts the message, retrieves the encrypted blob
from the blob store, verifies the SHA256 hash of it, verifies the MAC,
and decrypts the plaintext.

Group Messages
Traditional unencrypted messenger apps typically employ “server-side fan-out”
for group messages. A client wishing to send a message to a group of users
transmits a single message, which is then distributed N times to the N different
group members by the server.

6 WhatsApp Encryption Overview

OCTOBER 22, 2020

This is in contrast to “client-side fan-out,” where a client would transmit a
single message N times to the N different group members itself.

Messages to WhatsApp groups build on the pairwise encrypted sessions
outlined above to achieve efficient server-side fan-out for most messages
sent to groups. This is accomplished using the “Sender Keys” component of
the Signal Messaging Protocol.

The first time a WhatsApp group member sends a message to a group:

1.	 The sender generates a random 32-byte Chain Key.

2.	 The sender generates a random Curve25519 Signature Key
key pair.

3.	 The sender combines the 32-byte Chain Key and the public key
from the Signature Key into a Sender Key message.

4.	 The sender individually encrypts the Sender Key to each
member of the group, using the pairwise messaging protocol
explained previously.

For all subsequent messages to the group:

1.	 The sender derives a Message Key from the Chain Key, and
updates the Chain Key.

2.	 The sender encrypts the message using AES256 in CBC mode.

3.	 The sender signs the ciphertext using the Signature Key.

4.	 The sender transmits the single ciphertext message to the server,
which does server-side fan-out to all group participants.

The “hash ratchet” of the message sender’s Chain Key provides forward
secrecy. Whenever a group member leaves, all group participants clear their
Sender Key and start over.

Call Setup
WhatsApp voice and video calls are also end-to-end encrypted. When a
WhatsApp user initiates a voice or video call:

1.	 The initiator builds an encrypted session with the recipient
(as outlined in Section Initiating Session Setup), if one does not
already exist.

2.	 The initiator generates a random 32-byte SRTP master secret.

3.	 The initiator transmits an encrypted message to the recipient that
signals an incoming call, and contains the SRTP master secret.

4.	 If the responder answers the call, a SRTP encrypted call ensues.

7 WhatsApp Encryption Overview

OCTOBER 22, 2020

Statuses
WhatsApp statuses are encrypted in much the same way as group messages.
The first status sent to a given set of recipients follows the same sequence
of steps as the first time a WhatsApp group member sends a message to a
group. Similarly, subsequent statuses sent to the same set of recipients follow
the same sequence of steps as all subsequent messages to a group. When
a status sender removes a receiver either through changing status privacy
settings or removing a number from their address book, the status sender
clears their Sender Key and starts over.

Live Location
Live location messages and updates are encrypted in much the same way as
group messages. The first live location message or update sent follows the
same sequence of steps as the first time a WhatsApp group member sends
a message to a group. But, live location demands a high volume of location
broadcasts and updates with lossy delivery where receivers can expect to see
large jumps in the number of ratchets, or iteration counts. The Signal Protocol
uses a linear-time algorithm for ratcheting that is too slow for this application.
This document offers a fast ratcheting algorithm to solve this problem.

Chain keys are currently one-dimensional. To ratchet N steps takes N compu-
tations. Chain keys are denoted as CK(iteration count) and message
keys as MK(iteration count).

CK(0)

CK(1)

 …

CK(N-1) MK(N-1)

Consider an extension where we keep two chains of chain keys:

CK1(0) CK2(0)

 		

CK1(1)	 CK2(1)

 		

 	…

 		

 CK2(M-1) MK(M-1)

8 WhatsApp Encryption Overview

OCTOBER 22, 2020

In this example, message keys are always derived from CK2. A receiver
who needs to ratchet by a large amount can skip M iterations at a time
(where M is an agreed-upon constant positive integer) by ratcheting CK1
and generating a new CK2:

CK1(0)

CK1(1) CK2(0) MK(M)

 		

CK1(2)		 CK2(1)

A value of CK2 may be ratcheted up to M times. To ratchet N steps takes up
to [N÷M] + M computations.

After a sender creates a message key and encrypts a message with it, all
chain keys on the path that led to its creation must be destroyed to preserve
forward secrecy.

CK1(0)

CK1(1) CK2(0) MK(M)

 		

CK1(2)	 CK2(1)

Generalizing to D dimensions, a sender can produce D initial chain keys.
Each chain key but the first is derived from the preceding chain key using a
distinct one-way function: these are the right-pointing arrows in the diagram
above. Senders distribute all D chain keys to receivers who need them,
except as noted below.

RNG CK1(0) CK2(0) … CKD(0)

Legal values for D are positive powers of two less than or equal to the number
of bits in the iteration counter: 1, 2, 4, 8, 16, and 32. Implementors select a
value of D as an explicit CPU-memory (or CPU-network bandwidth) tradeoff.

If a chain key CKj (for j in [1, D]) has an iteration count of M, it cannot be
used. This algorithm restores the chain keys to a usable state:

1.	 If j = 1, fail because the iteration count has reached its limit.

2.	 Derive CKj from CKj-1

3.	 Ratchet CKj-1 once, recursing if necessary.

Moving from one iteration count to another never ratchets a single chain
key more than M times. Therefore, no ratcheting operation takes more than
D×M steps.

9 WhatsApp Encryption Overview

OCTOBER 22, 2020

Signal uses different functions for ratcheting versus message key com-
putation, since both come from the same chain key. In this notation {x}
refers to an array of bytes containing a single byte x.

MK = HmacSHA256(CKj(i), {1})

CKj(i+1) = HmacSHA256(CKj(i), {2})

Each dimension must use a different function. Keys are initialized as:

j = 1 : CK1(0) RNG(32)

j > 1 : CKj(0) HmacSHA256(CKj-1(0), {j+1})

And ratcheted as:

CKj(i) HmacSHA256(CKj(i-1), {j+1})

Verifying Keys
WhatsApp users additionally have the option to verify the keys of the other
users with whom they are communicating in end-to-end encrypted contexts
so that they are able to confirm that an unauthorized third party (or WhatsApp)
has not initiated a man-in-the-middle attack. This can be done by scanning a
QR code, or by comparing a 60-digit number.

The QR code contains:

1.	 A version.

2.	 The user identifier for both parties.

3.	 The full 32-byte public Identity Key for both parties.

When either user scans the other’s QR code, the keys are compared to ensure
that what is in the QR code matches the Identity Key as retrieved from
the server.

The 60-digit number is computed by concatenating the two 30-digit numeric
fingerprints for each user’s Identity Key. To calculate a 30-digit numeric
fingerprint:

1.	 Iteratively SHA-512 hash the public Identity Key and user identi-
fier 5200 times.

2.	 Take the first 30 bytes of the final hash output.

3.	 Split the 30-byte result into six 5-byte chunks.

4.	 Convert each 5-byte chunk into 5 digits by interpreting each 5-byte
chunk as a big-endian unsigned integer and reducing it modulo
100000.

5.	 Concatenate the six groups of five digits into thirty digits.

10 WhatsApp Encryption Overview

OCTOBER 22, 2020

Transport Security
Communication between WhatsApp clients and WhatsApp chat servers
is layered within a separate encrypted channel. On KaiOS, iPhone, and
Android, those end-to-end encryption capable clients use Noise Pipes with
Curve25519, AES-GCM, and SHA256 from the Noise Protocol Framework
for long running interactive connections.

This provides clients with a few nice properties:

1.	 Extremely fast lightweight connection setup and resume.

2.	 Encrypts metadata to hide it from unauthorized network observers.
No information about the connecting user’s identity is revealed.

3.	 No client authentication secrets are stored on the server. Clients
authenticate themselves using a Curve25519 key pair, so the server
only stores a client’s public authentication key. If the server’s user
database is ever compromised, no private authentication creden-
tials will be revealed.

Note: In cases where a business user delegates operation of their
Business API client to a vendor, that vendor will have access to their
private keys - including if that vendor is Facebook. However, these
private keys will still not be stored on the WhatsApp chat server. See
below for details.

Defining End-to-End Encryption
WhatsApp defines end-to-end encryption as communications that remain
encrypted from a device controlled by the sender to one controlled by the
recipient, where no third parties, not even WhatsApp or our parent company
Facebook, can access the content in between. A third party in this context
means any organization that is not the sender or recipient user directly
participating in the conversation.

Implementation on WhatsApp
Services
This is straightforward when it comes to two people communicating on
their phones or computers using WhatsApp Messenger or the WhatsApp
Business App: each person’s WhatsApp endpoint is running on a device
they control.

11 WhatsApp Encryption Overview

OCTOBER 22, 2020

Some organizations may use the WhatsApp Business API, an application
that can be deployed as a WhatsApp endpoint on a server. The Business
API allows those organizations to programmatically send and receive
messages.

WhatsApp considers communications with Business API users who manage
the API endpoint on servers they control to be end-to-end encrypted since
there is no third-party access to content between endpoints.

Some organizations may choose to delegate management of their WhatsApp
Business API endpoint to a vendor. In these instances, communication still
uses the same Signal protocol encryption and clients on or after version
v2.31 are configured to generate private keys within the vendor-controlled
API endpoint. However, because the WhatsApp Business API user has
chosen a third party to manage their endpoint, WhatsApp does not consider
these messages end-to-end encrypted.

In 2021, organizations who use the Business API will be able to designate
WhatsApp’s parent company, Facebook, as the vendor that operates the
Business API endpoint on their behalf. Since such messages are not delivered
directly to an endpoint controlled by the organization, WhatsApp does not
consider chats with organizations who choose to use Facebook to operate
their API endpoint to be end-to-end encrypted.

12 WhatsApp Encryption Overview

OCTOBER 22, 2020

Encryption Has No Off Switch
All chats use the same Signal protocol outlined in this whitepaper, regardless
of their end-to-end encryption status. The WhatsApp server has no access to
the client’s private keys, though if a business user delegates operation of their
Business API client to a vendor, that vendor will have access to their private
keys - including if that vendor is Facebook.

When chatting with an organization that uses the Business API, WhatsApp
determines the end-to-end encryption status based only on the organization’s
choice of who operates its endpoint.

The encryption status of an end-to-end encrypted chat cannot change without
the change being visible to the user.

Displaying End-to-End Encryption
Status
Across all our services, WhatsApp makes the end-to-end encryption status of a
chat clear. If the user’s phone sees that it’s communicating with an API endpoint
that delegates operation of its API to a vendor, the phone will display this to the
user. The user can also double check the encryption status within the chat or
in the business info section of their app.

These changes will take effect in all WhatsApp versions after January 2021.

Conclusion
All WhatsApp messages are sent with the same Signal protocol outlined above,
and WhatsApp considers all messages from a device controlled by the sender
to one whose device is controlled by the recipient to be end-to-end encrypted.
Communications with a recipient who elects to use a vendor to manage their
API endpoint are not considered end-to-end encrypted. If this occurs, WhatsApp
makes it clear to users within the chat.

The Signal Protocol library used by WhatsApp is based on the Open Source
library, available here:

http://github.com/whispersystems/libsignal-protocol-java/

13 WhatsApp Encryption Overview

OCTOBER 22, 2020

